分析工具
Onshape 分析工具在 Part Studio 中可用于草图和零件,在装配体可用于零件和装配体。分析工具图标显示在 Part Studio 和装配体界面的右下角。
Click the Show analysis tools () to open the context menu:
在 Part Studio 中使用各种方法对草图或零件进行曲率可视化和分析。通过快捷方式键 (shift+c)、草图、零件或曲面上的环境菜单或界面右下角的“显示分析”工具菜单来访问“曲线/曲面分析”对话框。
在草图模式下或编辑草图时,您可以使用快捷方式 Shift+c 自动选择所有草图曲线,并打开“曲率/曲面分析”对话框。Shift+c 作为切换开关:在仍然选中的同时,可打开和关闭对话框。
即使在退出草图之后,曲率/曲面处理工具也会保持打开状态,不过,选择输入框不会处于激活状态。您可以添加更多选择,或移除选择,只要工具处于打开状态即可。如果您在打开工具之前进行预选,则工具会打开且仅包含该选择,同时清除了先前进行的任何其他选择。
若要检查曲线和曲面,请执行以下操作:
- Click the Show analysis tools () in the bottom right corner of the interface, then select Curve/surface analysis to open the dialog box. (You can also RMB-click on a sketch or part and select Curve/surface analysis):
-
选择您想要检查的曲线或曲面。
- 检查使用对话框底部的滑块可调整曲率梳的幅值,使用相应的复选框可选择是否显示曲率梳、反曲率点、最小半径、U 曲线、V 曲线,是否让曲率梳跨面延伸。
曲率梳在均匀间隔的等值线上进行评估,不一定是在控制点上,用于评估直至流动 (G3) 连续性的曲线/曲面的生成形状。
-
如有必要,单击并拖动一条曲线以调整曲率。当您拖动时,曲率梳会动态更新。
-
要可视化 U 曲线和/或 V 曲线,请选中这两个复选框中的一个或两个,例如:
-
可选。增加或减少 U 或 V 曲线数,范围是从 2 到 64。各自的默认值为 8。
-
选择控制点栅格以显示控制点在定义曲面(或曲线)的底层 b 样条上的位置。控制点的数量和分布提供有关定义形状的基础数学的重要信息。
密集的控制点群指示潜在的问题区域,并可能对曲面质量有害。简而言之,控制点栅格用于理解曲面/曲线的基本数学定义,
-
完成后,关闭“曲率”对话框;单击 。
让滑块朝向中心左侧:
滑块更靠近中心:
显示创建特征期间的曲率
您还可以显示正在处理的特征的曲率梳,例如,在拉伸过程中:
- 在特征对话框打开的情况下,在图形区域中单击鼠标右键,然后选择“显示曲率”以打开“显示曲率”对话框:
- 选择特征的曲线:
- 您可以显示用于创建新特征的选定边的曲率(取消选中“显示预览边的曲率”),或选择显示预览边的曲率以查看正在创建的新特征边的曲率梳:
您还可以通过在“显示曲率”对话框中选中相应选项左侧的框来显示曲率梳、反曲率点和最小半径,如下所示:
显示 Part Studio 中选定边的二面角度。
快捷键:Shift+d
在草图模式下或编辑草图时,您可以使用快捷方式 Shift+d 自动打开“二面角分析”对话框。Shift+d 作为切换开关:在仍然选中的同时,可打开和关闭对话框。
对选定对象所做的任何更改将在您下次调用该工具时保留。如果您在打开工具之前进行了预选择,则该工具将仅以该选择打开,并清除先前所做的任何其他选择。
-
In a Part Studio, click the Show analysis tools () in the bottom right corner of the interface.
-
从菜单中选择“二面角分析”以打开对话框:
-
选择一条或多条边以显示二面角度。
-
选择您偏好的计量单位。
-
最大 - 当选中一条边(或多条边)后,将显示最大二面角度。
-
最小 - 当选中一条边(或多条边) 后,将显示最小二面角度。
-
-
可以选择“启用阈值显示”以激活可自定义的高阈值和低阈值输入框。
-
或者,使用“比例”滑块调整二面角梳形的长度。
在 Part Studio 或装配体中检测并查看零件之间的干涉。
- 如果 Part Studio 或装配体中有多个零件,请单击界面右下角的“显示分析工具”菜单。
- 从菜单中选择“干涉检测”以打开对话框。
- 选择两个或多个零件,以查看其中的任何干扰质量。
如上所述,干涉显示为红色,并且对话框的“干涉”部分中列出了涉及的部分。
将光标悬停在对话框中的零件名称上可以看到图形区域中的交叉亮显。当焦点位于对话框中的“干涉”输入框上时,图形区域将进行缩放以适应所选干涉。将光标悬停在对话框中的“干涉”输入框上,然后在图形区域中出现一个包围框,包围模型中的干涉。在对话框中,边框的长度/宽度/高度也会在悬停时显示:
您可以使用框选来选择要进行干涉检测的图元:从左上方拖动到右下方,以仅包括该框完全包含的零件或主体。从右下角拖动到左上角以包括选框接触的任何零件或主体。
斑马条纹表示 Part Studio 或装配体中条纹空间在当前模型、面或曲面上的反射。这使您可以查看边的曲率是否已对齐且连续。
-
Click the Show analysis tools () in the bottom right corner of the interface.
-
从菜单中选择“斑马条纹”以打开对话框:
-
条纹计数 - 每个曲面上显示的曲率条纹数
-
翻转条纹 - 反转条纹。
-
显示边 - 显示零件面之间的边(默认设置)。取消选中此选项时,零件边将处于隐藏状态。在某些情况下,隐藏这些边可以改进零件面之间的曲线可视化。
当边上的曲率对齐时,边是平滑的,条纹对齐,然后在边上突然转向:
当边上的曲率连续时,边是平滑的,边上的曲率没有变化。条纹对齐,未在边上突然转向:
示例:
|
|
当您接受“斑马条纹”对话框(单击复选标记)时,对话框关闭,条纹保持不变。若要关闭斑马条纹,请再次从“显示分析”工具菜单中选择“斑马条纹”,然后单击对话框中的 X。(从“曲率可视化”菜单中选择“颜色表”也会关闭斑马条纹。)
通过在 Part Studio 的面或曲面应用您选择的颜色渐变,曲率颜色表可以更深入地研究曲率。您可以调整颜色渐变的比色刻度尺,从不同类型的颜色表中进行选择,以获得最佳的视觉呈现,从而辨别表面连续性和边之间的过渡。
-
Click the Show analysis tools () in the bottom right corner of the interface. From the menu, select Curvature color map:
这会将颜色表应用于图形区域中的面和曲面,使用颜色渐变来显示比例上的曲率:
使用颜色表可视化曲率的选项包括:
-
为地图设置颜色。单击下拉菜单以选择最适合您的需求和可视化偏好的配色方案:
-
Viridis - 深紫色到浅绿色的颜色范围
-
蓝色 -> 红色 - 蓝色到红色的比例
-
Plasma - 深蓝色到浅黄色的色度
-
彩虹 - 彩虹的颜色色度
-
-
为映射选择图形。单击下拉菜单以选择特定的图形:
-
高斯 - 根据给定点上的最大和最小半径值的乘积来分配颜色。曲率显示为半径的倒数。
-
平均值 - 根据给定点上的最大半径和最小半径的平均值分配颜色。
-
最大半径 - 根据给定点上的最大半径值分配颜色。
-
最小半径 - 根据给定点上的最小半径值分配颜色。
-
您可以将颜色表重新定位到图形区域中的任何位置,以改善模型和底图的查看效果。将鼠标悬停在图形上,直到看到鼠标指针的十字线。单击图形并将其拖动到新位置。对于某些位置,图形会重新定向到竖直位置。无论图形位于何处,“颜色”和“曲率”下拉列表都位于图形区域的顶部。
提示
当曲面或面没有曲率时,因为没有计算半径,Onshape 不会为颜色表比例分配任何值。颜色表仍然可见,您仍然可以从表和颜色中进行选择。如果未计算任何值,则不应用曲率颜色。在打开任何曲率分析工具之前,模型的颜色保持不变。
您更改比例的方法可以是通过单击并拖动颜色刻度尺的端点,使之彼此靠近。比例尺上的点会重新计算,面和曲面上的颜色将根据新比例进行刷新。您也可以单击某个值并在输入框中键入数字以调整比例。请确保单击小的“刷新”图标。
使用“拔模分析”可查找模型中不符合指定的最小拔模量的面、发现切槽面域,并在 Part Studio 中查看选定几何图元的潜在分型线位置。
- Click the Show analysis tools () in the bottom right corner of the graphics area. From the menu, select Draft analysis to open the dialog box and color legend. In the dialog box, indicate the Mold split direction by selecting a plane, face, or edge.
- 指定最小拔模角度。
- 选择要检查的图元。
- (可选)使用“显示切槽面域”复选框来关闭红色切槽面的指示。
请注意界面顶部的拔模分析颜色图例。
- 蓝色的面指示它们符合指定的最小拔模角度。
- 黄色的面指示它们太陡(小于指定的最小拔模量)。
- 红色的面指示切槽面。
您可以通过将光标移至模型上方来查看各个拔模的精确角度:
与其他可视化模式一样,在您选择其他对象之前,拔模分析保持活动状态。在它处于活动状态时,您可以编辑零件以更正拔模,并立即查看操作的效果。您也可以使用剖视图来查看模型上采用其他方式可能很难看到的地方。
拔模分析自动在两个方向上执行。Onshape 采用不同的颜色显示可接受的拔模以指示方向:浅蓝色表示第一侧(正向),深蓝色表示第二侧(负向)。操纵器箭头指向第一侧,您可以使用对话框中的方向箭头(如上图所示,在“模具分割方向”输入框旁边)翻转方向。
Use Thickness analysis to measure how much material is distributed throughout each region of a part.
Currently only native Onshape parts and mesh model types are supported.
步骤
In a Part Studio that contains at least one part:
-
Click the Show analysis tools () in the bottom right corner of the graphics area. From the menu, select Thickness analysis to open the dialog box:
-
Select a part (or parts) to analyze.
Onshape instantly begins to compute the thickness analysis request. The progress spinner in the bottom left of the graphics area provides an update on the status of the analysis:
-
Preparing thickness analysis - Geometry is discretized and processed for analysis
-
Processing thickness analysis - High performance cloud instances are provisioned
-
Calculating thickness - Thickness analysis computation begins
-
Refining thickness analysis - Initial results are available and higher fidelity results continue to process
-
Postprocessing thickness analysis - Final results are processing and will soon be available
-
-
Click the green check mark to accept your selection and close the dialog box. The thickness analysis tool stays active. When the initial thickness analysis results are available, the color bar opens in the graphics area:
Selected parts automatically render. The color bar maps field values to the colors displayed along the surface of your part (or parts).
-
To change the color scheme, select a palette from the Colors dropdown.
-
To change the color bar's range, select either the lower or upper bound value and type in a new number. Use the refresh button to reset the bound to the lowest/highest value within the measured field.
Alternatively, click and drag the tick mark above either the lower or upper bound value and drag it to a new position along the legend. Reposition the color bar entirely by hovering your cursor until it becomes active, then click and drag the legend to a new position on your screen.
Unless manually adjusted, the legend's bounds may automatically adjust to new limits while intermediate thickness analysis results are refined. Once manually adjusted, intermediate updates will not cause the upper or lower bounds to change. However, the far-most values along the color bar may update as new information becomes available.
The legend shows unique colors for field values outside of the user-defined bounds. Check the Dim colors scale option to create a 3-color view and quickly assess regions outside of your target range.
-
Select the preferred field from the Method dropdown menu:
-
Rolling ball
-
Rolling ball gradient (%)
-
Ray
-
Ray gradient (%)
You can continue to work in the Part Studio normally while using Thickness analysis. The thickness evaluation will automatically update as you make edits.
-
-
To edit the Thickness analysis, click the Show analysis tools () in the bottom right of the graphics area and select Edit thickness analysis from the menu.
-
To turn Thickness analysis off, click the Show analysis tools () and select Turn thickness analysis off.
Rolling ball thickness method
The rolling ball thickness method calculates the size of the largest sphere that can be inscribed within a part at each point along the part's surface.
The sphere is tangent to the point of inspection and at least one other point upon the part (though it may be tangent to more than one part) and is thus said to roll along the part's interior while simultaneously changing size. The thickness measured is reported as the diameter of the inscribed sphere.
提示
-
The rolling ball thickness method provides a thickness measurement defined by localized, non-trivial geometric relations at more than one point within the region of interest.
-
The rolling ball thickness distribution is guaranteed to be continuous across all regions of any solid part.
Ray thickness method
The ray thickness method calculates the distance traveled along a straight line path through the interior of a part.
At each point along the part's surface, a ray is projected normal to that surface, terminating upon first intersection at another point along the part. The length of the line segment between those two points is the ray thickness.
提示
-
A line projected normal to one point along the surface of a part has no guarantee of any geometric relation to the surface at its second point.
-
The ray thickness distribution is seldom continuous across the entire part. It will contain sharp discontinuities, most obviously near sharp corners.
Thickness gradient (ray method or rolling ball method)
The thickness gradient measures how quickly the thickness of a part changes as one moves along the part's surface. The value itself is the ratio (A/B) of the following terms:
-
The maximum amount that thickness could grow or shrink as one moves (nominally and instantaneously) in any direction from one point along the surface of the part, measured in units of length.
-
The nominally instantaneous geodesic distance traveled along said direction, measured in the same units of length.
The ratio is non-dimensional, non-negative, and presented as a percentage (%) out of convention.
Flatten surfaces generates a planar surface from one or more contiguous non-planar surfaces.
The tool performs a geometric flattening to create a surface with minimum strain energy.
The flattening operation ignores the material properties of the part on which the surface is flattened. The resultant surface has no material properties.
Some uses for Flatten surfaces:
-
To evaluate the flat (cut) shape for a paint mask that is applied to a certain area of a part.
-
To evaluate the feasibility of a decal applied to a curved region of a part without undue strain or wrinkling.
-
To determine the cut shape of a composite ply given the outer mold line (OML) and the ply boundary.
-
To add features (cutouts, text curves, text wraps) to the flat surface and have them form back to the curved surface shape.
In a Part Studio:
-
Click the Show analysis tools icon () in the bottom right corner of the graphics area. From the menu, select Flatten surfaces to open the dialog:
-
With the Faces to flatten field selected, Select one or more contiguous faces in the graphics area.
-
Click to select the Rip edges field in the dialog, and then select any edges in the graphics area where the flattened surface should be ripped.
-
Check the following optional display settings, and enter the appropriate input values:
-
Show facets - Check to display the mesh facets on both the original and flattened surfaces.
-
Show edges - By default, the edges on the flattened surfaces are visible. Uncheck to hide these edges.
-
Show checkerboard - Check to display a black and white checkerboard pattern overlaid on both the original and flattened surfaces.
-
Checkerboard scale - Sets the checkerboard pattern scale. Lower values result in larger patterned blocks. Higher values result in smaller patterned blocks.
-
-
Show distortion - Displays areas of the flattened surface where there is geometrical distortion as a result of the flattening process in magenta. The stronger the color, the more that distortion occurs.
-
Distortion scale - Sets the sensitivity level of distortion that is reported. Higher values increase distortion sensitivity (reporting more distortion). Lower values decrease the distortion sensitivity (reporting less distortion).
-
-
Show flattened - Displays the flattened result. This allows you to toggle the flattened result on or off.
-
Flattened position (mate connector) - Select a mate connector to position the flattened surface result in a location other than below the selected surfaces.
-
Flattened offset - If a mate connector is used for the Flattened position, enter a positive or negative numerical value to offset this position along the mate connector's Z axis.
-
Flattened angle - If a mate connector is used for the Flattened position, enter a positive or negative angle degree value to offset this position about the mate connector's Z axis.
-
-
Origin - Select a vertex used as the origin point for the resultant flattened surface.
-
-
Click Show export controls to display the export options:
-
Export Format - Select from a list of file format options: PARASOLID, STL, DXF, or SVG.
-
Export button - Click the Export button to have the final flattened surface results downloaded to your device.
-
-
Click Flatten to display the final flattened surface resulting from the dialog inputs.
Flattening to obtain a decal or paint mask surface.
One use of the Flatten surfaces tool is to extract a flat surface out of multiple non-planar surfaces, used as a decal or paint mask.
In the following image, the side view appears to be a perfect circle. In reality you will need to extract the curved surface, flatten it, apply a decal, and then apply the decal on the curved surface:
Using the Flatten surfaces tool to obtain the decal cutout:
Once you have the surface, check Show export controls, select either SVG or DXF as your export format, and click the Export button to send the file to your device. You can then work on the decal in your external software, for example, Adobe Illustrator.
Flattening a pipe
In this example, a pipe is unrolled. This is a surface that can be developed and adding a rip produces a flat surface with no distortion:
Setting the origin to the vertex at the top of the pipe allows you to visualize how the surface flattens along the pipe edge:
Car hood
This example shows a scanned surface of a car hood brought into Onshape as a mesh import. Typically, you want to create a paint protection film (PPF) from this surface. This is useful on hoods, fenders, front surfaces of headlights, and other curved surfaces. The import is flattened and shows little distortion:
-
Some options require pressing the Flatten button again if they are updated. For example, if a Rip edge is added, or an Origin selected.
-
The Flatten surfaces tool does not create a part in the Parts list. Export the flattened surface to obtain a representation of the surface in a file. This file can then be imported back into the Part Studio, if required.
-
Flatten surfaces does not provide perfect accuracy. You should not use Flatten surface to obtain critical or fine measurements for use in calculations. It should be used to provide general dimensions to wrap things like decals around non-planar surfaces.